Libreboot installation guides


Return to previous index

This article will teach you how to install Libreboot, on any of the supported laptop, desktop and server motherboards.

ALWAYS remember to make a backup of the current flash, when overwriting it, regardless of what firmware you currently have and what firmware you’re re-flashing it with; this includes updates between Libreboot releases. Use the -r option in flashprog instead -w, to read from the flash.

SAFETY WARNING!

IMPORTANT ADVICE: PLEASE READ THESE INSTRUCTIONS BEFORE INSTALLING/UPDATING LIBREBOOT.]

If you’re using release ROMs, some files may be missing inside them, and must be added. See: Inserting Vendor Files.

If you’re building from source, you can ignore the above guidance.

Install Libreboot via external flashing

Refer to the following article:
Externally rewrite 25xx NOR flash via SPI protocol

You are strongly advised to have an external flashing setup, and make sure it works, before attempting internal flashing. This, in addition to making a backup of the current flash contents, prior to flashing, whether you dump externally or internally - if only external flashing is available, then it’s usually the case that only external dumping is available too.

Need help?

Help is available on Libreboot IRC and other channels.

If you want professional installation, Minifree Ltd sells Libreboot pre-installed on select hardware, and it also provides a Libreboot preinstall service if you want to send your machine in to have Libreboot installed for you.

Leah Rowe, the founder and lead developer of Libreboot, also owns and operates Minifree Ltd; sales provide funding for the Libreboot project.

Which systems are supported by Libreboot?

Before actually reading the installation guides, please ensure that your system is fully supported by Libreboot. More information about the Libreboot build system can be found in the lbmk maintenance manual, and information about porting new systems in the porting manual.

With x86 machines, you can use the SeaBIOS or GNU GRUB payloads. On ARM systems, you can use the U-Boot payload (coreboot still initialises hardware).

Libreboot currently supports the following systems:

Servers (AMD, x86)

Desktops (AMD, Intel, x86)

Laptops (Intel, x86)

Laptops (ARM, with U-Boot payload)

Emulation

Disable security before flashing

Before internal flashing, you must first disable /dev/mem protections. Make sure to re-enable them after you’re finished.

See: Disabling /dev/mem protection

ROM image file names

Libreboot ROM images are named like this: payload_board_inittype_displaytype_keymap.rom

The payload option can be SeaBIOS, SeaGRUB or U-Boot. If GRUB is available on a given board, in flash, both SeaBIOS and SeaGRUB are provided; SeaBIOS images still have GRUB available via the SeaBIOS menu, and SeaGRUB means that SeaBIOS automatically loads GRUB from flash first (but you can still choose something else, by pressing ESC in SeaBIOS when prompted).

Inittype can be libgfxinit, vgarom or normal. The libgfxinit option means coreboot provides native video initialisation, for onboard graphics. The vgarom option means coreboot executes a VGA option ROM for video initialisation. The normal option means coreboot provides no video initialisation, via VGA ROM or native code.

Displaytype can be txtmode or corebootfb - if inittype is normal, this is ignored because txtmode is assumed.

If payload is seabios instead of seagrub, no keymaps are inserted into flash and only US QWERTY is assumed, otherwise the keymap refers to what is used in GRUB on seagrub payload setups.

If you use a libgfxinit image on a desktop machine, you can still insert a graphics card and it’ll work just fine; its own VGA option ROM will be executed instead, if the primary payload is SeaBIOS, whether that be pure SeaBIOS or a SeaGRUB setup.

EC firmware updates

Obviously, free EC firmware would be preferable, but it is not the case on all machine. We would like to have free EC firmware on more machines, but for now, we must rely on the vendor in a lot of cases. The EC is usually on a separate flash, so you wouldn’t think about it unless you knew it was there; this is exactly why it’s mentioned, so that you think about it, because proprietary software is bad.

In many cases, the EC firmware must be updated on a separate IC to the main boot flash, and this can usually only be done with the vendor’s own tool, running from the vendor boot firmware, and usually only on Windows, because they provide EC and BIOS/UEFI updates in the same utility. Find out what you need to do for your machine before installing Libreboot.

It is recommended that you update to the latest EC firmware version. The EC firmware

Updating the EC can sometimes provide benefit depending on the vendor. For example, they might fix power issues that could then enhance battery life.

ThinkPads

See: http://www.thinkwiki.org/wiki/BIOS_update_without_optical_disk

Otherwise, check the Lenovo website to find the update utility for your mainboard.

HP EliteBooks

EC firmware is required in the main boot flash, but Libreboot’s build system automatically downloads this from HP for each machine, and inserts it, so you don’t have to worry. Just make sure that vendor files are inserted if using release images.

Other

The same wisdom applies to other laptop vendors.

Non-laptops typically do not have embedded controllers in them.

Libreboot installation instructions

In general, if Libreboot is already running, you can skip towards the final section on this page, which provides general internal flashing instructions. Internal flashing is when you flash the target machine from the target machine, inside an operating system running on it.

Some boards require special steps, even if Libreboot is already running, for example if you locked down the flash, or as another example, SureStart on HP EliteBook 820 G2

Therefore, before following generic guides, make sure to check first whether your board has special instructions, otherwise use the generic guide at the end of this article.

Intel GbE MAC address (IFD-based systems)

On all Intel platforms except X4X (e.g. Gigabyte GA-G41M-ES2L) and i945 ones (e.g. ThinkPad X60, ThinkPad T60, MacBook2,1), an Intel Flash Descriptor is used. If the board has Intel gigabit ethernet, the MAC address is included in flash, and can (must) be changed prior to installation.

You can use nvmutil to change the MAC address. You will perform this modification to the ROM image, before flashing it.

Flash lockdown / boot security

This is referred to informally as Secure libreBoot.

Full flash lockdown is possible, with cryptographic verification of your Linux kernel and other files, using special features in the GRUB payload.

See: GRUB hardening / Secure libreBoot

If you already did this, it’s possible that you may no longer be able to flash internally. If that is the case, you must flash externally.

Updating an existing installation

Unless otherwise stated, in sections pertaining to each mainboard below, an existing Libreboot installation can be updated via internal flashing, without any special steps; simply follow the general internal flashing guide, in the final section further down this page.

If you have an existing Libreboot installation but you locked down the flash, updating it will require external flashing.

If you currently have the factory firmware, you probably need to flash externally; on some machines, internal flashing is possible, usually with special steps required that differ from updating an existing installation.

The next sections will pertain to specific mainboards, where indicated, followed by general internal flashing instructions where applicable.

HP EliteBook 820 G2 (internal and external)

See: HP EliteBook 820 G2 flashing guide

The flashprog command is identical, except programmer selection, on external and internal flashing; internal is only possible if you already have Libreboot.

HP EliteBook 8560w (vendor BIOS)

If you have the factory firmware: HP 8560w external flashing guide

Dell Latitude laptops (vendor BIOS)

See: Dell Latitude flashing guide

This applies to all supported Dell Latitude models. Remember to update the MAC address with nvmutil, before flashing.

ThinkPad X200/T400/T500/W500/R400/R500

If you’re running one of these with Lenovo BIOS, you must externally flash Libreboot, because the original firmware restricts writes to the flash.

There machines all use SOIC8/SOIC16 flash ICs. Refer to pages specifically for each machine:

NOTE: T400S, X200S and X200 Tablet require different steps, because these have WSON8 flash ICs on them, which will require some soldering. Please read the external flashing guide in the section pertaining to WSON.

You can find WSON8 probes online, that are similar to a SOIC8/SOIC16 clip. Your mileage may very, but WSON8 has the same pinout as SOIC8 so you might have some luck with that.

Intel D510MO/D410PT (vendor BIOS)

See: External flashing guide - both boards are compatible with the same image.

Gigabyte GA-G41M-ES2L (vendor BIOS)

Internal flashing is possible, from factory BIOS to Libreboot, but special steps are required.

See: Gigabyte GA-G41M-ES2L installation guide

Acer G43T-AM3 (vendor BIOS)

See: Acer G43T-AM3

MacBook 1,1 / 2,1 / iMac 5,2 (vendor BIOS)

MacBook 1,1 requires external flashing. MacBook 2,1 can always be flashed internally. iMac 5,2 can be flashed internally.

Also check the Macbook2,1 hardware page

ASUS KCMA-D8 / KGPE-D16 (vendor BIOS)

You must flash it externally (DIP-8 section) - also look at the KGPE-D16 hardware page.

Further information is available on the KCMA-D8 page.

KGPE-D16 installation is essentially the same, with the same type of flash IC (DIP-8). Refer to the external flashing guide.

ASUS KFSN4-DRE (vendor BIOS)

This board uses LPC flash in a PLCC32 socket. This coreboot page shows an example of the push pin as a proof of concept: http://www.coreboot.org/Developer_Manual/Tools#Chip_removal_tools

See: ASUS KFSN4-DRE guide

Hot-swap the flash IC with another one while it’s running, and flash it internally.

Intel D945GCLF (vendor BIOS)

See: Intel D945GCLF flashing guide

Dell OptiPlex 7010/9010 MT (vendor BIOS)

This board is essentially identical to the Dell Precision T1650, except that it does not support ECC memory. Same wiring.

You can flash the T1650 image on this machine. NOTE: This applies to the MT variant, specifically. Do not flash T1650 images on the 7010/9010 SFF.

Dell Precision T1650 desktop

Refer to the T1650 hardware page. External flashing required, or you can set the Service Mode jumper and flash internally (from vendor firmware, to Libreboot).

Dell OptiPlex 7020/9020/XE2 SFF/MT

Refer to the 7020/9020 hardware page. Internal flashing (from vendor firmware to Libreboot) is possible if you set the Service Mode jumper.

HP EliteBook laptops (vendor BIOS)

Refer to the hardware page for info about HP laptops, and read the external flashing guide.

Links to specific HP laptop pages:

These pages provide more info about external flashing. You must remember to insert vendor files, if you’re using release ROMs.

HP Elite 8200 SFF (vendor BIOS)

See: HP Elite 8200 SFF install guide

HP Elite 8300 USDT (vendor BIOS)

See: HP Elite 8200 USDT install guide

ThinkPad X220/X220T/T420/T420s/T520

T420/T520: T420 flash instructions

T420s/T520 are similar, in terms of assembly/disassembly.

Now, as for X220/X220:

X220/X220 Tablet is essentially the same as the X230, but cannot be flashed internally; you must use an external flasher.

Otherwise, look at X230 disassembly. Note that the X220 has a single 8MB flash, instead of 8MB and 4MB.

ThinkPad X230/T430/T530/W530/X230T

Internal flashing from vendor BIOS to Libreboot is possible, but not recommended. See: IvyBridge ThinkPad internal flashing.

External flashing recommended, but only documented for X230. See: ThinkPad X230 install guide.

Otherwise, refer to external SPI flashing.

ThinkPad T60/X60/X60Tablet/X60S

Only the Intel GPU is compatible. Do not flash the ATI GPU models.

External flashing guides:

These machines can also be flashed internally, by exploiting a bug in the original Lenovo BIOS. If there’s a BIOS password at boot, you should just flash externally.

Internal flashing instructions:

First, please ensure that your CR2032/CMOS battery is working. This is what powers the SRAM containing BIOS settings, and it powers the real-time clock. It also holds the BUC.TS value - this is what we need.

BUC (Backup Control) register contains a bit called Top Swap (TS). The 64KB bootblock at the top of flash is complemented by a backup Top Swap just above it. The one at the end can’t be flashed internally while Lenovo BIOS is running, but the rest of it can be flashed (everything above the main bootblock).

By setting the TS bit, you can make the machine boot from the backup bootblock.

Download the Libreboot 20160907 utils archive, and in there you will find these binaries:

You’ll also find the bucts tool. Run it as root:

./bucts 1

Now run both of these as root:

./flashrom_i945_sst -p internal -w coreboot.rom
./flashrom_i945_mx -p internal -w coreboot.rom

You’ll see a lot of errors. This is normal. You should see something like:

Reading old flash chip contents... done.
Erasing and writing flash chip... spi_block_erase_20 failed during command execution at address 0x0
Reading current flash chip contents... done. Looking for another erase function.
spi_block_erase_52 failed during command execution at address 0x0
Reading current flash chip contents... done. Looking for another erase function.
Transaction error!
spi_block_erase_d8 failed during command execution at address 0x1f0000
Reading current flash chip contents... done. Looking for another erase function.
spi_chip_erase_60 failed during command execution
Reading current flash chip contents... done. Looking for another erase function.
spi_chip_erase_c7 failed during command execution
Looking for another erase function.
No usable erase functions left.
FAILED!
Uh oh. Erase/write failed. Checking if anything has changed.
Reading current flash chip contents... done.
Apparently at least some data has changed.
Your flash chip is in an unknown state.

If you see this, rejoice! It means that the flash was successful. Please do not panic. Shut down now, and wait a few seconds, then turn back on again.

The main bootblock still isn’t flashed, but you can shut down, wait a few seconds and boot up again. When you do, you’ll have Libreboot. Please make sure to flash a second time, like so:

flashprog -p internal -w coreboot.rom

Libreboot recommends flashprog now, which is a fork of flashrom, but we used flashrom in the 2016 release. The macronix/ssh flashrom binaries there are specifically patched; check the Libreboot 20160907 source code for the actual patches. The patches modify some flash chip definitions in flashrom, to exploit the bug in Lenovo BIOS enabling internal flashing.

You must ensure that the second flash is performed, upon reboot, because otherwise if the CR2032 battery dies, bucts will be reset and it will no longer boot.

When you’ve done the second flash, which includes overwriting the main bootblock, set bucts back to zero:

./bucts 0

The second flash can be done by simply following the general internal flashing guide further down on this page.

Thinkpad T440p/W541 (vendor BIOS)

Guides:

HP EliteBook laptops (vendor BIOS)

Each machine has it’s own guide:

HP Elite desktops (vendor BIOS)

Each machine has it’s own guide:

ARM-based Chromebooks

See: Chromebook flashing instructions

NOTE: The generic flashing instructions (later on this page) apply only to the x86 machines, because the Chromebooks still use flashrom with the -p host argument instead of -p internal when flashing, and you typically need to flash externally, due to Google’s security model.

QEMU (arm64 and x86)

Libreboot can be used on QEMU (virtual machine), which is useful for debugging payloads and generally trying out Libreboot, without requiring real hardware.

See: Libreboot QEMU guide

Install via host CPU (internal flashing)

NOTE: This mainly applies to the x86 machines.

Please check other sections listed above, to see if there is anything pertaining to your mainboard. Internal flashing means that you boot Linux or BSD on the target machine, and run flashprog there, flashing the machine directly.

If you can’t flash internally, you must flash externally.

Internal flashing is often unavailable with the factory firmware, but it is usually possible when Libreboot is running (barring special circumstances).

Run flashprog on host CPU

Always remember to insert vendor files, when using release images. Otherwise, these files are added automatically at build time, when building from source (but they are not present in release images).

Flash chip size

Use this to find out:

flashprog -p internal

In the output will be information pertaining to your boot flash.

Howto: read/write/erase the boot flash

How to read the current chip contents:

sudo flashprog -p internal:laptop=force_I_want_a_brick,boardmismatch=force -r dump.bin

You should still make several dumps, even if you’re flashing internally, to ensure that you get the same checksums. Check each dump using sha1sum

How to erase and rewrite the chip contents:

sudo flashprog -p internal:laptop=force_I_want_a_brick,boardmismatch=force -w libreboot.rom

NOTE: force_I_want_a_brick is not scary. Do not be scared! This merely disables the safety checks in flashprog. Flashrom and coreboot change a lot, over the years, and sometimes it’s necessary to use this option. If you’re scared, then just follow the above instructions, but remove that option. So, just use -p internal. If that doesn’t work, next try -p internal:boardmismatch=force. If that doesn’t work, try -p internal:boardmismatch=force,laptop=force_I_want_a_brick. So long as you ensure you’re using the correct ROM for your machine, it will be safe to run flashprog. These extra options just disable the safetyl checks in flashprog. There is nothing to worry about.

If successful, it will either say VERIFIED or it will say that the chip contents are identical to the requested image.

NOTE: there are exceptions where the above is not possible. Read about them in the sections below:

Removed boards

These boards were in Libreboot, but have been removed with the intention of re-adding them at a later date. They were removed due to issues. List:

NOTES about removed boards

WARNING: veyron speedy boards (e.g. C201) have non-functional video init as of 19 February 2023, and no fix is yet available on that date. See: https://notabug.org/libreboot/lbmk/issues/136 - the last tested revision from 2021.01 is known to work, for u-boot on this board. See:
https://wiki.postmarketos.org/wiki/ASUS_Chromebook_C201_(google-veyron-speedy) (alpernebbi on IRC is looking into this, to bisect uboot and update the latest revisions) - for now, ROM images deleted from the Libreboot 20221214 and 20230319 releases.

WARNING: daisy- and peach- boards require a BL1 bootloader firmware, but the one from coreboot 3rdparty is a fake/placeholder file. We need logic in the Libreboot build system for properly fetching/extracting these, plus docs to cover it. For now, assume that these are broken - ROM images are excluded, for now, and have been deleted from the Libreboot 20221214 and 20230319 releases. - see: https://review.coreboot.org/plugins/gitiles/blobs/+/4c0dcf96ae73ba31bf9aa689768a5ecd47bac19e and https://review.coreboot.org/plugins/gitiles/blobs/+/b36cc7e08f7337f76997b25ee7344ab8824e268d

d945gclf: Doesn’t boot at all, according to last report. D510MO is still in lbmk but still was reported problematic; other boards should be fine (see list above).

WARNING: Support for ARM chromebooks is at a proof-of-concept stage. Refer to docs/uboot/ for more info about the U-Boot payload.

Markdown file for this page: https://libreboot.org/docs/install/index.md

Subscribe to RSS for this site

Site map

This HTML page was generated by the Untitled Static Site Generator.